5.1 ANGLES AND ARCS

Definitions:

4. An angle consists of three components: vertex, initial side and the terminal side. An angle is a measure of how much turning has taken place about the vertex.

Positive angles are measured in counterclockwise direction Negative angles are measured in clockwise direction. An angle measured in **standard position** has its vertex at the origin and initial side on the positive x-axis as shown.

Units of measuring angles

60" (secs)= 1' (min) 60' (mins)= 1° (degree) 360° (degrees)= 1 revolution 3600" (secs)= 1° (degree)

Fractions of a degree can be written as a decimal or in degree, minute, second (DMS).

Example 1

Express 22.125° in DMS

Solution

$$22.125^{\circ} = 22^{\circ} + (0.125 \times 60)^{\circ} = 22^{\circ} + 7.5^{\circ}$$

$$\Rightarrow 22^{\circ} + 7^{\circ} + (0.5 \times 60)^{\circ}$$

$$\Rightarrow 22^{\circ} 7^{\circ} 30^{\circ}$$

Example 2

Write the exact value of the following angle measure in decimal method

- a) 48°30'36"
- b) The difference between 65° and 29°14'27"
- c) The sum of $41^{\circ}40^{\circ}23^{\circ}$ and $25^{\circ}49^{\circ}55^{\circ}$

Solution

a)
$$48^{\circ}30'36'' = 48^{\circ} + \left(\frac{30}{60}\right)^{\circ} + \left(\frac{36}{3600}\right)^{\circ}$$

 $\Rightarrow (48 + 0.5 + 0.01) = 48.51^{\circ}$
b) $(65^{\circ}0'0'' - 29^{\circ}14'24'') = (64^{\circ}59'60'' - 29^{\circ}14'24'') = 35^{\circ}45'36''$
 $\Rightarrow \left(35 + \frac{45}{60} + \frac{36}{3600}\right)^{\circ} = 35^{\circ} + 0.75^{\circ} + 0.01^{\circ} = 35.76^{\circ}$
c) $(41^{\circ}40'23'' + 25^{\circ}49'55'') = 67^{\circ}30'18'' = \left(67 + \frac{30}{60} + \frac{18}{3600}\right)^{\circ} = 67^{\circ} + 0.5^{\circ} + 0.005^{\circ} = 67.505^{\circ}$

Types of Angles

The table below provides illustrates some types of angles that will used in this section.

Name	Angle	Comment	
Right	90°	Terminal side on the positive y axis	
Acute	$0^{\circ} < \theta < 90^{\circ}$	Terminal side in Quadrant 1	
Obtuse	$90^{\circ} < \theta < 180^{\circ}$	Terminal side in Quadrant 2	
Complimentary	$\phi + \theta = 90^{\circ}$	ϕ is the compliment of $ heta$	
Supplementary	$\phi + \theta = 180^{\circ}$	ϕ is the suppliment of $ heta$	
Quadrantal	$90^{\circ}.k$, $k \in \mathbb{Z}$	Terminal side is on the x -or y - axis	
Co-terminal	θ + 360°. k , $k \in \mathbb{Z}$	Same Terminal side	
Straight	180°	Terminal side on the negative x -axis	

Example 3

- a) If the compliment of $29^{\circ}16\dot{1}7^{\circ}$ is α and the supplement of $32^{\circ}3\dot{3}3^{\circ}$ is β , write the exact value of $\alpha+\beta$ in DMS method
- b) Find the positive angle less than 360° that is co-terminal with;

ii)
$$-1300^{\circ}$$

Solution

a)
$$\alpha = (90^{\circ}0.0^{\circ} - 29^{\circ}16.17^{\circ}) = 60^{\circ}43.43^{\circ}$$

 $\beta = (180^{\circ}0.0^{\circ} - 32^{\circ}2.33^{\circ}) = 147^{\circ}56.27^{\circ}$
 $\alpha + \beta = (60^{\circ}43.43^{\circ} + 147^{\circ}56.27^{\circ}) = 208^{\circ}40.10^{\circ}$

- b) i) Smallest positive angle co-terminal with $555^{\circ} = 555^{\circ} + 360.k$ $k \in \mathbb{Z}$ $\Rightarrow 555^{\circ} - 360^{\circ} = 195^{\circ}$
 - ii) Smallest positive angle co-terminal with $-1300^{\circ} = -1300^{\circ} + 360.k$ $k \in \mathbb{Z}$ $\Rightarrow -1300^{\circ} + 1440^{\circ} = 140^{\circ}$

Classification of Angles in degrees

Angle in degrees	Quadrant
$0^{\circ} < \theta < 90^{\circ}$	1
90° < θ < 180°	2
$180^{\circ} < \theta < 270^{\circ}$	3
270° < θ < 360°	4

Angles that are co-terminal with each other belong to the same quadrant.

Example 4

Classify each of the following angles in standard position by the quadrant.

b)
$$1115^{\circ}$$
 c) -727°

c)
$$-727^{\circ}$$

Solution

a) Smallest positive angle coterminal with $495^{\circ} = 495^{\circ} + 360^{\circ} \cdot k = 495^{\circ} - 360^{\circ} = 135^{\circ}$

 135° is quadrant 2 \Rightarrow 495° is quadrant 2

b) Smallest positive angle coterminal with

$$1115^{\circ} = 1115^{\circ} + 360^{\circ}.k = 1115^{\circ} - 1080^{\circ} = 35^{\circ}$$

$$35^{\circ}$$
 is quadrant 2 \Rightarrow 1115 $^{\circ}$ is quadrant 1

c) Smallest positive angle coterminal with

$$-727^{\circ} = -727^{\circ} + 360^{\circ}.k = -727^{\circ} + 1080^{\circ} = 353^{\circ}$$

$$353^{\circ}$$
 is quadrant 2 $\Rightarrow 353^{\circ}$ is quadrant 4

Arc length = $s = 2\pi r$

Angle in radians=
$$\theta = \frac{s}{r}$$

If $s = 2\pi r$ is the arc length equivalent to one revolution

Then the angle in radians is
$$\theta = \frac{s}{r} = \frac{2\pi r}{r} = 2\pi$$
 radians

1 revolution = $360^{\circ} \Leftrightarrow 2\pi$ Radians

Note: 1 radian =
$$\frac{180^{\circ}}{\pi}$$
 and $1^{\circ} = \frac{\pi}{180}$ radians

Example 5

Convert a) 270° to radians b) $\frac{3}{8}\pi$ radians to degrees

Solution

a)
$$270^{\circ} \Leftrightarrow \frac{270}{180} \times \pi = \frac{3\pi}{2}$$
 radians

b)
$$\frac{3}{8}\pi \Leftrightarrow \frac{3}{8} \times 180 = 67.5^{\circ}$$

Example 6

Find the length of an arc that subtends an angle of 150° in a circle of diameter 16 cm.

Solution

$$S = r\theta = 8 \times \frac{150}{180} \times \pi = \frac{20\pi}{3} \text{ cm}$$

Angle Classification in Radians

Angle in Radians	Quadrant
$0 < \theta < \frac{\pi}{2} (1.57)$	1
$\frac{\pi}{2}(1.57) < \theta < \pi(3.14)$	2
$\pi(3.14) < \theta < \frac{3\pi}{2}(4.71)$	3
$\frac{3\pi}{2}(4.71) < \theta < 2\pi(6.28)$	4

Example 7

- a) In which quadrant does 11 radians lie?
- b) Find the **smallest positive** and the **largest negative angle** co-terminal with 13 radians
- c) The difference between two complimentary angles is α and β is $\frac{\pi}{18}$ radians. Find the measure of angle α in terms of π .

Solution

- a) The smallest positive angle co-terminal with 11 radians = $11-2\pi \simeq 4.72$ which is quadrant 4. \therefore 11 radians is in quadrant 4.
- b) The smallest positive angle co-terminal with 13 radians = $13-4\pi$

The largest negative angle co-co-terminal with 13 radians= $13-6\pi$

c)
$$\alpha - \beta = \frac{\pi}{18}$$
$$\alpha + \beta = \frac{\pi}{2}$$

$$\Rightarrow \alpha = \frac{5\pi}{18}$$

Linear and Angular Speed

Angular speed ω = Angle in radians ÷Time = $\frac{\theta}{t}$

Linear speed v = Distance along the Arc \div Time = $\frac{s}{t} = \frac{r\theta}{t} = r\omega$

Note: If v is m/s and r is in meters then ω rad/sec If v is cm/\min and r is in cm then ω rad/min

Example 8

An air fan is rotating at 30 revolutions per minute. Find the angular speed in radians per second.

Solution

$$\omega = 30 rev / \min = \frac{30 \times 2\pi}{60} rad / \sec = \pi rad / \sec$$

Example 9

A wheel is moving at a linear speed of 30 meters per second. If the diameter of the wheel is 30 cm find the angular speed of the wheel in radians per minute.

Solution

Diameter ==
$$2r \Rightarrow r = 15cm = \frac{15}{100}m$$

$$\omega = \frac{v}{r} = \frac{30}{\frac{15}{100}} = \frac{30 \times 100}{15} = 200 \, rad \, / \sec$$

$$\Rightarrow$$
 200×60*rad* / min = 12000*rad* / min